
Graphs and Traversals
Lecture 22 (Graphs 1)

1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Lecture 22, CS61B, Spring 2024

Trees
• Tree Definition
• Tree Traversals
• Usefulness of Tree Traversals

Graphs
• Graph Definition
• Some Famous Graph Problems

Graph Traversals
• Motivation: s-t Connectivity
• Depth First Search
• Tree vs. Graph Traversals

Challenge: Invent Breadth First
Search

Tree Definition

Tree Definition (Reminder)

A tree consists of:
● A set of nodes.
● A set of edges that connect those nodes.

○ Constraint: There is exactly one path between any two nodes.

Green structures below are trees. Pink ones are not.

Rooted Trees Definition (Reminder)

A

A rooted tree is a tree where we’ve chosen one node as the “root”.
● Every node N except the root has exactly one parent, defined as the first node

on the path from N to the root.
● A node with no child is called a leaf.

B

C

A

B

C

A

C C

B
For each of these:
● A is the root.
● B is a child of A. (and C of B)
● A is a parent of B. (and B of C)

Trees

We’ve seen trees as nodes in a specific data structure implementation: Search
Trees, Tries, Heaps, Disjoint Sets, etc.

Trees

Trees are a more general concept.
● Organization charts.
● Family lineages* including phylogenetic trees.
● MOH Training Manual for Management of Malaria.

*: Not all family
lineages are
trees!

Lecture 22, CS61B, Spring 2024

Trees
• Tree Definition
• Tree Traversals
• Usefulness of Tree Traversals

Graphs
• Graph Definition
• Some Famous Graph Problems

Graph Traversals
• Motivation: s-t Connectivity
• Depth First Search
• Tree vs. Graph Traversals

Challenge: Invent Breadth First
Search

Tree Traversals

Example: File System Tree

Sometimes you want to iterate over a tree. For example, suppose you want to find
the total size of all files in a folder called 61b.
● What one might call “tree iteration” is actually called “tree traversal.”
● Unlike lists, there are many orders in which we might visit the nodes.

○ Each ordering is useful in different ways.

hw1

synthesizer spec GuitarHeroLite.java

hw1.md karplus-strong.png

...

61b

proj0

audio data

... ...

...

...

planets.txt

23433 bytes 16180 bytes

1251 bytes

851 bytes

Tree Traversal Orderings

Level Order
● Visit top-to-bottom, left-to-right (like reading in English): DBFACEG

A C

B

D

E

F

G

Tree Traversal Orderings

Level Order
● Visit top-to-bottom, left-to-right (like reading in English): DBFACEG

Depth First Traversals
● 3 types: Preorder, Inorder, Postorder
● Basic (rough) idea: Traverse “deep nodes” (e.g. A) before shallow ones (e.g. F).
● Note: Traversing a node is different than “visiting” a node. See next slide.

A C

B

D

E

F

G

Preorder: “Visit” a node, then traverse its children:

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

Preorder: “Visit” a node, then traverse its children: D

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

Preorder: “Visit” a node, then traverse its children: D

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

Preorder: “Visit” a node, then traverse its children: D

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(B)

Preorder: “Visit” a node, then traverse its children: DB

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(B)

Preorder: “Visit” a node, then traverse its children: DB

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(B)

Preorder: “Visit” a node, then traverse its children: DB

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(B)

 preOrder(A)

Preorder: “Visit” a node, then traverse its children: DBA

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(B)

 preOrder(A)

Preorder: “Visit” a node, then traverse its children: DBA

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(B)

 preOrder(A)

Skipping over the steps of
preOrder(null) for brevity.

Preorder: “Visit” a node, then traverse its children: DBA

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(B)

 preOrder(A)

Skipping over the steps of
preOrder(null) for brevity.

Preorder: “Visit” a node, then traverse its children: DBA

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(B)

Preorder: “Visit” a node, then traverse its children: DBAC

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(B)

Skipping over the steps of preOrder(C)
for brevity.

Preorder: “Visit” a node, then traverse its children: DBAC

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

Preorder: “Visit” a node, then traverse its children: DBAC

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(F)

Preorder: “Visit” a node, then traverse its children: DBACF

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(F)

Preorder: “Visit” a node, then traverse its children: DBACFE

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(F)

Skipping over the steps of preOrder(E)
for brevity.

Preorder: “Visit” a node, then traverse its children: DBACFEG

Demo: Preorder Depth-First Tree Traversal

A C

B

D

E

F

G

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

Call stack:
preOrder(D)

 preOrder(F)

Skipping over the steps of preOrder(G)
for brevity.

Preorder traversal: “Visit” a node, then traverse its children: DBACFEG
Inorder traversal: Traverse left child, visit, then traverse right child:

Depth First Traversals

A C

B

D

E

F

G

inOrder(BSTNode x) {
 if (x == null) return;
 inOrder(x.left)
 print(x.key)
 inOrder(x.right)
}

preOrder(BSTNode x) {
 if (x == null) return;
 print(x.key)
 preOrder(x.left)
 preOrder(x.right)
}

ABCDE F G

Preorder traversal: “Visit” a node, then traverse its children: DBACFEG
Inorder traversal: Traverse left child, visit, traverse right child: ABCDEFG
Postorder traversal: Traverse left, traverse right, then visit: ???????

Depth First Traversals http://yellkey.com/yes

A C

B

D

E

F

G

postOrder(BSTNode x) {
 if (x == null) return;
 postOrder(x.left)
 postOrder(x.right)
 print(x.key)
}

1. DBACEFG
2. GFEDCBA
3. GEFCABD
4. ACBEGFD
5. ACBFEGD
6. Other

Preorder traversal: “Visit” a node, then traverse its children: DBACFEG
Inorder traversal: Traverse left child, visit, traverse right child: ABCDEFG
Postorder traversal: Traverse left, traverse right, then visit: ACBEGFD

Depth First Traversals

A C

B

D

E

F

G

1. DBACEFG
2. GFEDCBA
3. GEFCABD
4. ACBEGFD
5. ACBFEGD
6. Other

postOrder(BSTNode x) {
 if (x == null) return;
 postOrder(x.left)
 postOrder(x.right)
 print(x.key)
}

9

● Preorder traversal: We trace a path around the graph, from the top going
counter-clockwise. “Visit” every time we pass the LEFT of a node.

● Inorder traversal: “Visit” when you cross the bottom of a node.
● Postorder traversal: “Visit” when you cross the right a node.

Example: Post-Order Traversal
● 4 7 8 5 2 9 6 3 1

A Useful Visual Trick (for Humans, Not Algorithms)

4

2

1

3

6

8

5

7

Lecture 22, CS61B, Spring 2024

Trees
• Tree Definition
• Tree Traversals
• Usefulness of Tree Traversals

Graphs
• Graph Definition
• Some Famous Graph Problems

Graph Traversals
• Motivation: s-t Connectivity
• Depth First Search
• Tree vs. Graph Traversals

Challenge: Invent Breadth First
Search

Usefulness of Tree
Traversals

What Good Are All These Traversals?

Example: Preorder Traversal for printing directory listing:

python

sc2APM

directOverlay notes

directO.slndirectO.suodirectIO printAPM.py

DXHookD3D11.cs Injector.cs

What Good Are All These Traversals?

Example: Postorder Traversal for gathering file sizes.

python

sc2APM

directOverlay notes

directO.slndirectO.suodirectIO printAPM.py

DXHookD3D11.cs Injector.cs

18381 8798

38912 881

324

874

postOrder(BSTNode x) {

 if (x == null) return 0;

 int total = 0;

 for (BSTNode c : x.children())

 total += postOrder(c)

 total += x.fileSize();

 return total;

}

What Good Are All These Traversals?

Example: Postorder Traversal for gathering file sizes.

python

sc2APM

directOverlay notes

directO.slndirectO.suodirectIO printAPM.py

DXHookD3D11.cs Injector.cs

18381 8798

38912 881

324

874

postOrder(BSTNode x) {

 if (x == null) return 0;

 int total = 0;

 for (BSTNode c : x.children())

 total += postOrder(c)

 total += x.fileSize();

 return total;

} 27179

66972 874

68170

Lecture 22, CS61B, Spring 2024

Trees
• Tree Definition
• Tree Traversals
• Usefulness of Tree Traversals

Graphs
• Graph Definition
• Some Famous Graph Problems

Graph Traversals
• Motivation: s-t Connectivity
• Depth First Search
• Tree vs. Graph Traversals

Challenge: Invent Breadth First
Search

Graph Definition

Trees and Hierarchical Relationships

Trees are fantastic for representing strict hierarchical relationships.
● But not every relationship is hierarchical.
● Example: Paris Metro map.

This is not a tree: Contains cycles!
● More than one way to get from A to B.

A
B

Tree Definition (Revisited)

A tree consists of:
● A set of nodes.
● A set of edges that connect those nodes.

○ Constraint: There is exactly one path between any two nodes.

Green structures on slide are trees. Pink ones are not.

Graph Definition

A graph consists of:
● A set of nodes.
● A set of zero or more edges, each of which connects two nodes.

Green structures below are graphs.
● Note, all trees are graphs!

Graph Example: BART

Is the BART graph a tree?

● No, has one cycle.
○ San Bruno
○ SFO
○ Millbrae

Graph Definition

A simple graph is a graph with:
● No edges that connect a vertex to itself, i.e. no “length 1 loops”.
● No two edges that connect the same vertices, i.e. no “parallel edges”.

Green graph below is simple, pink graphs are not.

Graph Definition

A simple graph is a graph with:
● No edges that connect a vertex to itself, i.e. no “loops”.
● No two edges that connect the same vertices, i.e. no “parallel edges”.

In 61B, unless otherwise explicitly stated, all graphs will be simple.
● In other words, when we say “graph”, we mean “simple graph.”

Graph Types

a

b

d

c

a

b

d

c

e

a

b

d

c

a

b

d

c

Acyclic:

Cyclic:

Directed Undirected

With Edge Labels

b

d

c

e

a

1

2

3

1

Graph Terminology

● Graph:
○ Set of vertices, a.k.a. nodes.
○ Set of edges: Pairs of vertices.
○ Vertices with an edge between are adjacent.
○ Optional: Vertices or edges may have labels (or

weights).
● A path is a sequence of vertices connected by edges.

○ A simple path is a path without repeated vertices.
● A cycle is a path whose first and last vertices are the

same.
○ A graph with a cycle is ‘cyclic’.

● Two vertices are connected if there is a path between
them. If all vertices are connected, we say the graph is
connected.

Figure from Algorithms 4th Edition

Graph Example: The Paris Metro

This schematic map of the Paris Metro is a graph:
● Undirected
● Connected
● Cyclic (not a tree!)
● Vertex-labeled (each has a color).

Edge captures ‘is-a-type-of’ relationship. Example: descent is-a-type-of movement.

Not a tree!
● Two paths from

group_action to
event.

Directed Graph Example

Lecture 22, CS61B, Spring 2024

Trees
• Tree Definition
• Tree Traversals
• Usefulness of Tree Traversals

Graphs
• Graph Definition
• Some Famous Graph Problems

Graph Traversals
• Motivation: s-t Connectivity
• Depth First Search
• Tree vs. Graph Traversals

Challenge: Invent Breadth First
Search

Some Famous
Graph Problems

There are lots of interesting questions we can ask about a graph:
● What is the shortest route from S to T? What is the longest without cycles?
● Are there cycles?

Graph Queries

● Is there a tour you can take that
only uses each node (station)
exactly once?

● Is there a tour that uses each edge
exactly once?

S
T

Graph Queries More Theoretically

Some well known graph problems and their common names:
● s-t Path. Is there a path between vertices s and t?
● Connectivity. Is the graph connected, i.e. is there a path between all vertices?
● Biconnectivity. Is there a vertex whose removal disconnects the graph?
● Shortest s-t Path. What is the shortest path between vertices s and t?
● Cycle Detection. Does the graph contain any cycles?
● Euler Tour. Is there a cycle that uses every edge exactly once?
● Hamilton Tour. Is there a cycle that uses every vertex exactly once?
● Planarity. Can you draw the graph on paper with no crossing edges?
● Isomorphism. Are two graphs isomorphic (the same graph in disguise)?

Often can’t tell how difficult a graph problem is without very deep consideration.

Graph Problem Difficulty

Some well known graph problems:
● Euler Tour. Is there a cycle that uses every edge exactly once?
● Hamilton Tour. Is there a cycle that uses every vertex exactly once?

Difficulty can be deceiving.
● An efficient Euler tour algorithm O(# edges) was found as early as 1873 [Link].
● Despite decades of intense study, no efficient algorithm for a Hamilton tour

exists. Best algorithms are exponential time.

Graph problems are among the most mathematically rich areas of CS theory.

https://ethkim.github.io/TA/251/eulerian.pdf

Lecture 22, CS61B, Spring 2024

Trees
• Tree Definition
• Tree Traversals
• Usefulness of Tree Traversals

Graphs
• Graph Definition
• Some Famous Graph Problems

Graph Traversals
• Motivation: s-t Connectivity
• Depth First Search
• Tree vs. Graph Traversals

Challenge: Invent Breadth First
Search

Motivation for
Graph Traversals:
s-t Connectivity

s-t Connectivity

Let’s solve a classic graph problem called the s-t connectivity problem.
● Given source vertex s and a target vertex t, is there a path between s and t?

Requires us to traverse the graph somehow.

1

2

3

4

5

6

7

8

0
s

t

s-t Connectivity

Let’s solve a classic graph problem called the s-t connectivity problem.
● Given source vertex s and a target vertex t, is there a path between s and t?

Requires us to traverse the graph somehow.
● Try to come up with an algorithm for connected(s, t).

1

2

3

4

5

6

7

8

0
s

t

s-t Connectivity

One possible recursive algorithm for connected(s, t).
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any neighbor v of s, return true.
● Return false.

What is wrong with the algorithm above?

1

2

3

4

5

6

7

8

0
s

t

s-t Connectivity

One possible recursive algorithm for connected(s, t).
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any neighbor v of s, return true.
● Return false.

What is wrong with the algorithm above?

1

2

3

4

5

6

7

8

0
s

t

s-t Connectivity

One possible recursive algorithm for connected(s, t).
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any neighbor v of s, return true.
● Return false.

What is wrong with it? Can get caught in an infinite loop. Example:
● connected(0, 7):

○ Does 0 == 7? No, so...
○ if (connected(1, 7)) return true;

● connected(1, 7):
○ Does 1 == 7? No, so…
○ If (connected(0, 7)) … ← Infinite loop.

1

2

3

4

5

6

7

8

0
s

t

s-t Connectivity

One possible recursive algorithm for connected(s, t).
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any neighbor v of s, return true.
● Return false.

What is wrong with it? Can get caught in an infinite loop.
● How do we fix it?

1

2

3

4

5

6

7

8

0
s

t

Lecture 22, CS61B, Spring 2024

Trees
• Tree Definition
• Tree Traversals
• Usefulness of Tree Traversals

Graphs
• Graph Definition
• Some Famous Graph Problems

Graph Traversals
• Motivation: s-t Connectivity
• Depth First Search
• Tree vs. Graph Traversals

Challenge: Invent Breadth First
Search

Depth First Search

s-t Connectivity

One possible recursive algorithm for connected(s, t).
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Basic idea is same as before, but visit each vertex at most once.
● Marking nodes prevents multiple visits.

1

2

3

4

5

6

7

8

0
s

t

1

2

3

4

5

6

7

8

0
s

t

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

1

2

3

4

5

6

7

8

0
s

t

mark(0).
Is 0 == 7? No.

isMarked(1)? No.
● Check connected(1, 7).

*

Demo: s-t Connectivity

Call stack: 0

1

2

3

4

5

6

7

8

0
s

t

mark(1).
Is 1 == 7? No.

isMarked(0)? Yes.
isMarked(2)?

● Check connected(2, 7).

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1

1

2

3

4

5

6

7

8

0
s

t

mark(2).
Is 2 == 7? No.

isMarked(1)? Yes.
isMarked(5)?

● Check connected(5, 7). *

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2

1

2

3

4

5

6

7

8

0
s

t

mark(5).
Is 5 == 7? No.

isMarked(2)? Yes.
isMarked(4)?

● Check connected(4, 7).
*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2 → 5

1

2

3

4

5

6

7

8

0
s

t

mark(4).
Is 4 == 7? No.

isMarked(1)? Yes.

isMarked(3)? No.
● Check connected(3, 7).

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2 → 5 → 4

1

2

3

4

5

6

7

8

0
s

t

mark(3).
Is 3 == 7? No.

isMarked(4)? Yes.

No more neighbors! Return false.

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2 → 5 → 4 → 3

1

2

3

4

5

6

7

8

0
s

t

mark(4).
Is 4 == 7? No.

isMarked(1)? Yes.

isMarked(3)? No.
● Check connected(3, 7). Answer was

false.
isMarked(5)? Yes.
No more neighbors, so return false.

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2 → 5 → 4

1

2

3

4

5

6

7

8

0
s

t

mark(5).
Is 5 == 7? No.

isMarked(2)? Yes.
isMarked(4)?

● Check connected(4, 7). Answer was
false, so keep checking neighbors.

isMarked(6)?
● Check connected(6, 7).

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2 → 5

1

2

3

4

5

6

7

8

0
s

t

mark(6).
Is 6 == 7? No.

isMarked(5)? Yes.
isMarked(7)? No.

● Check connected(7, 7).

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2 → 5 → 6

1

2

3

4

5

6

7

8

0
s

t

mark(7).
Is 7 == 7? Yes. Return true!

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2 → 5 → 6 → 7

mark(6).
Is 6 == 7? No.

isMarked(5)? Yes.
isMarked(7)? No.

● Check connected(7, 7). Answer was
true, so return true.

1

2

3

4

5

6

7

8

0
s

t

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2 → 5 → 6

1

2

3

4

5

6

7

8

0
s

t

mark(5).
Is 5 == 7? No.

isMarked(2)? Yes.
isMarked(4)?

● Check connected(4, 7). Answer was
false, so keep checking neighbors.

isMarked(5)? Yes.
isMarked(6)?

● Check connected(6, 7): Return true!

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2 → 5

1

2

3

4

5

6

7

8

0
s

t

mark(2).
Is 2 == 7? No.

isMarked(1)? Yes.
isMarked(5)?

● Check connected(5, 7). Answer was
true, so return true!

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1 → 2

1

2

3

4

5

6

7

8

0
s

t

mark(1).
Is 1 == 7? No.

isMarked(0)? Yes.
isMarked(2)?

● Check connected(2, 7). Answer was
true, so return true!

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0 → 1

1

2

3

4

5

6

7

8

0
s

t

mark(0).
Is 0 == 7? No.

isMarked(1)? No.
● Check connected(1, 7). Answer was

true, so return true!

*

Demo: s-t Connectivity

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

Call stack: 0

connected(s, t):
● Mark s.
● Does s == t? If so, return true.
● Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
● Return false.

1

2

3

4

5

6

7

8

0
s

t

*

Demo: s-t Connectivity

mark(0).
Is 0 == 7? No.

isMarked(1)? No.
● Check connected(1, 7). Answer was

true, so return true!

Depth First Traversal

1

2

3 4

5

6

7

8

0

This idea of exploring a neighbor’s entire subgraph before moving on to the next
neighbor is known as Depth First Traversal or Depth First Search.
● Example: Explore 1’s subgraph completely before using the edge 0-3.
● Called “depth first” because you go as deep as possible.

s

t

Depth First Traversal

1

2

3 4

5

6

7

8

0

This idea of exploring a neighbor’s entire subgraph before moving on to the next
neighbor is known as Depth First Traversal.
● Example: Explore 1’s subgraph completely before using the edge 0-3.
● Called “depth first” because you go as deep as possible.

s

t

Entirely possible for 1’s subgraph to include 3!
● It’s still depth first, since we’re not using the

edge 0-3 until the subgraph is explored.

From: https://xkcd.com/761/

https://xkcd.com/761/

The Power of Depth First Search

DFS is a very powerful technique that can be used for many types of graph
problems.

Another example:
● Let’s discuss an algorithm that computes a path to every vertex.
● Let’s call this algorithm DepthFirstPaths.
● Goal: Find a path from s to every other reachable vertex, visiting each vertex

at most once.

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Start by calling dfs(0).

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

marked edgeTo
0 F -
1 F -
2 F -
3 F -
4 F -
5 F -
6 F -
7 F -
8 F -

Order of dfs calls: 0

Order of dfs returns:

Call stack:
dfs(0)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(0).

isMarked(1)? No.
● edgeTo[1] = 0. dfs(1).

*

marked edgeTo
0 T -
1 F 0
2 F -
3 F -
4 F -
5 F -
6 F -
7 F -
8 F -

Order of dfs returns:

Order of dfs calls: 01
dfs(0):

Call stack:
dfs(0)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(1).

isMarked(0)? Yes.
isMarked(2)? No.

● edgeTo[2] = 1. dfs(2).

*

marked edgeTo
0 T -
1 T 0
2 F 1
3 F -
4 F -
5 F -
6 F -
7 F -
8 F -

Order of dfs returns:

Order of dfs calls: 012
dfs(1):

Call stack:
dfs(0) → dfs(1)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(2).

isMarked(1)? Yes.
isMarked(5)? No.

● edgeTo[5] = 2. dfs(5).
*

marked edgeTo
0 T -
1 T 0
2 T 1
3 F -
4 F -
5 F 2
6 F -
7 F -
8 F -

Order of dfs returns:

Order of dfs calls: 0125
dfs(2):

Call stack:
dfs(0) → dfs(1) → dfs(2)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(5).

isMarked(2)? Yes.
isMarked(4)? No.

● edgeTo[4] = 5. dfs(4). *

marked edgeTo
0 T -
1 T 0
2 T 1
3 F -
4 F 5
5 T 2
6 F -
7 F -
8 F -

Order of dfs returns:

Order of dfs calls: 01254
dfs(5):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(4).

isMarked(1)? Yes.
isMarked(3)? No.

● edgeTo[3] = 4. dfs(3).

*

marked edgeTo
0 T -
1 T 0
2 T 1
3 F 4
4 T 5
5 T 2
6 F -
7 F -
8 F -

Order of dfs returns:

Order of dfs calls: 012543
dfs(4):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5) → dfs(4)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(3).

isMarked(4)? Yes.

No more children, so return.

*# marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 F -
7 F -
8 F -

Order of dfs returns: 3

Order of dfs calls: 012543
dfs(3):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5) → dfs(4) → dfs(3)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(4).

isMarked(3)? No.
● edgeTo[3] = 4. dfs(3).

No more children, so return.

*

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 F -
7 F -
8 F -

Order of dfs returns: 34

Order of dfs calls: 012543
dfs(4):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5) → dfs(4)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(5).

isMarked(2)? Yes.
isMarked(4)? No.

● edgeTo[3] = 4. dfs(4).
isMarked(6)? No.

● edgeTo[6] = 5. dfs(6).

*

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 F 5
7 F -
8 F -

Order of dfs returns: 34

Order of dfs calls: 0125436
dfs(5):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(6).

isMarked(5)? Yes.
isMarked(7)? No.

● edgeTo[7] = 6. dfs(7).

*

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 T 5
7 F 6
8 F -

Order of dfs returns: 34

Order of dfs calls: 01254367
dfs(6):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5) → dfs(6)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(7).

isMarked(6)? Yes.

No more children, so return. *

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 T 5
7 T 6
8 F -

Order of dfs returns: 347

Order of dfs calls: 01254367
dfs(7):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5) → dfs(6) → dfs(7)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(6).

isMarked(5)? Yes.
isMarked(7)? No.

● edgeTo[7] = 6. dfs(7).

No more children, so return.

*

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 T 5
7 T 6
8 F -

Order of dfs returns: 3476

Order of dfs calls: 01254367
dfs(6):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5) → dfs(6)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(5).

isMarked(2)? Yes.
isMarked(4)? No.

● edgeTo[3] = 4. dfs(4).
isMarked(6)? No.

● edgeTo[6] = 5. dfs(6).
isMarked(8)? No.

● edgeTo[8] = 5. dfs(8).

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 T 5
7 T 6
8 F 5

*

Order of dfs calls: 012543678

Order of dfs returns: 3476

dfs(5):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(8)

isMarked(5)? Yes.

No more children, so return.

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 T 5
7 T 6
8 T 5

*

Order of dfs calls: 012543678

Order of dfs returns: 34768

dfs(8):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5) → dfs(8)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(5).

isMarked(2)? Yes.
isMarked(4)? No.

● edgeTo[3] = 4. dfs(4).
isMarked(6)? No.

● edgeTo[6] = 5. dfs(6).
isMarked(8)? No.

● edgeTo[8] = 5. dfs(8)

No more children, so return.

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 T 5
7 T 6
8 T 5

*

Order of dfs calls: 012543678

Order of dfs returns: 347685

dfs(5):

Call stack:
dfs(0) → dfs(1) → dfs(2) →
dfs(5)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(2).

isMarked(1)? Yes.
isMarked(5)? No.

● edgeTo[5] = 2. dfs(5).

No more children, so return.
*

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 T 5
7 T 6
8 T 5

Order of dfs calls: 012543678

Order of dfs returns: 3476852

dfs(2):

Call stack:
dfs(0) → dfs(1) → dfs(2)

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

Demo: DepthFirstPaths

1

2

3

4

5

6

7

8

0
s

mark(1).

isMarked(0)? Yes.
isMarked(2)? No.

● edgeTo[2] = 1. dfs(2).
isMarked(4)? Yes.

No more children, so return.

*

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 T 5
7 T 6
8 T 5

Order of dfs calls: 012543678

Order of dfs returns: 34768521

dfs(1):

Call stack:
dfs(0) → dfs(1)

Demo: DepthFirstPaths

dfs(v):
● Mark v.
● For each unmarked adjacent vertex w:

○ set edgeTo[w] = v.
○ dfs(w)

1

2

3

4

5

6

7

8

0
s

mark(0).

isMarked(1)? No.
● edgeTo[1] = 0. dfs(1).

No more children, so return.

*

marked edgeTo
0 T -
1 T 0
2 T 1
3 T 4
4 T 5
5 T 2
6 T 5
7 T 6
8 T 5

Order of dfs calls: 012543678

Order of dfs returns: 347685210

dfs(0):

Call stack:
dfs(0)

Lecture 22, CS61B, Spring 2024

Trees
• Tree Definition
• Tree Traversals
• Usefulness of Tree Traversals

Graphs
• Graph Definition
• Some Famous Graph Problems

Graph Traversals
• Motivation: s-t Connectivity
• Depth First Search
• Tree vs. Graph Traversals

Challenge: Invent Breadth First
Search

Tree vs. Graph
Traversals

Tree Traversals

There are many tree traversals:
● Preorder: DBACFEG
● Inorder: ABCDEFG
● Postorder: ACBEGFD
● Level order: DBFACEG

A C

B

D

E

F

G

Graph Traversals

There are many tree traversals:
● Preorder: DBACFEG
● Inorder: ABCDEFG
● Postorder: ACBEGFD
● Level order: DBFACEG

A C

B

D

E

F

G

1

2

3

4

5

6

7

8

0
s

What we just did in DepthFirstPaths is called “DFS Preorder.”
● DFS Preorder: Action is before DFS calls to neighbors.

○ Our action was setting edgeTo.
○ Example: edgeTo[1] was set before

DFS calls to neighbors 2 and 4.
● One valid DFS preorder for this graph: 012543678

○ Equivalent to the order of dfs calls.

Graph Traversals

There are many tree traversals:
● Preorder: DBACFEG
● Inorder: ABCDEFG
● Postorder: ACBEGFD
● Level order: DBFACEG

A C

B

D

E

F

G

1

2

3

4

5

6

7

8

0
s

Could also do actions in DFS Postorder.
● DFS Postorder: Action is after DFS calls to neighbors.
● Example: dfs(s):

○ mark(s)
○ For each unmarked neighbor n of s, dfs(n)
○ print(s)

● Results for dfs(0) would be: 347685210
● Equivalent to the order of dfs returns.

Graph Traversals

Just as there are many tree traversals:
● Preorder: DBACFEG
● Inorder: ABCDEFG
● Postorder: ACBEGFD
● Level order: DBFACEG

A C

B

D

E

F

G

1

2

3

4

5

6

7

8

0
s

So too are there many graph traversals, given some source:
● DFS Preorder: 012543678 (dfs calls).
● DFS Postorder: 347685210 (dfs returns).

Graph Traversals

Just as there are many tree traversals:
● Preorder: DBACFEG
● Inorder: ABCDEFG
● Postorder: ACBEGFD
● Level order: DBFACEG

A C

B

D

E

F

G

1

2

3

4

5

6

7

8

0
s

So too are there many graph traversals, given some source:
● DFS Preorder: 012543678 (dfs calls).
● DFS Postorder: 347685210 (dfs returns).
● BFS order: Act in order of distance from s.

○ BFS stands for “breadth first search”.
○ Analogous to “level order”. Search is wide, not deep.
○ 0 1 24 53 68 7

Lecture 22, CS61B, Spring 2024

Trees
• Tree Definition
• Tree Traversals
• Usefulness of Tree Traversals

Graphs
• Graph Definition
• Some Famous Graph Problems

Graph Traversals
• Motivation: s-t Connectivity
• Depth First Search
• Tree vs. Graph Traversals

Challenge: Invent Breadth First
Search

Challenge: Invent
Breadth First
Search

Shortest Paths Challenge Before Next Lecture

Goal: Given the graph above, find the length of the shortest path from s to all
other vertices.
● Give a general algorithm.
● Hint: You’ll need to somehow visit vertices in BFS order.
● Hint #2: You’ll need to use some kind of data structure.

Will discuss a solution in the next lecture.

0

1

2

3

4

5

6

7

s

Summary

Graphs are a more general idea than a tree.
● A tree is a graph where there are no cycles and every vertex is connected.
● Key graph terms: Directed, Undirected, Cyclic, Acyclic, Path, Cycle.

Graph problems vary widely in difficulty.
● Common tool for solving almost all graph problems is traversal.
● A traversal is an order in which you visit / act upon vertices.
● Tree traversals:

○ Preorder, inorder, postorder, level order.
● Graph traversals:

○ DFS preorder, DFS postorder, BFS.
● By performing actions / setting instance variables during a graph (or tree)

traversal, you can solve problems like s-t connectivity or path finding.

