Introduction to Network Visualization with GEPHI - Martin Grandjean

Examples

Lecture 22 (Graphs 1)

Graphs and Traversals

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Trees
* Tree Definition

Tree Definition

Lecture 22, CS61B, Spring 2024

Tree Definition (Reminder)

A tree consists of;

e A setof nodes.
e A set of edges that connect those nodes.
o Constraint: There is exactly one path between any two nodes.

Green structures below are trees. Pink ones are not.

 ane

Rooted Trees Definition (Reminder)

A rooted tree is a tree where we've chosen one node as the “root”.

e Every node N except the root has exactly one parent, defined as the first node
on the path from N to the root.
e A node with no child is called a leaf.

For each of these: e
e Aistheroot. e e
e Bisachildof A. (andC of B) e

® AisaparentofB. (andB ofC)

Trees

We've seen trees as nodes in a specific data structure implementation: Search
Trees, Tries, Heaps, Disjoint Sets, etc.

awls same o a o e
- W= i = ®)(&)(s) OXOJOXO.

Trees

Trees are a more general concept.
e Organization charts.

e Family lineages* including phylogenetic trees.
e MOH Training Manual for Management of Malaria.

tory of fever in last 48hrs

Treat for malaria presumptively
If danger signs -hospitalize
May consider confirmatory test

Any Signv/Symptoms of severe
Malaria?

Infection? (e.g. ARI, typhoid, otitis)

* Treat as scvere malaria

Perform Malaria Test
(Microscopy if available or RDT)
+

Perform Additional test as applicable
(Full blood count, X-ray, urine, etc)

T
10 74 4
milion million million

years ago yearsago years ago

H President

John Smith
th

Arctic fox

Wox | —
Corsac fox

Ruppell’s fox

red fox

Cape fox

Blanford's fox 3

fennec fox
raccoondog —
culpeo fox
pampas fox
black-backed jackal —
golden jackal 1Y
. J

bat-eared fox
short-eared dog e
crab-eating fox i
sechuran fox)
chilla - &
Darwin's fox 2 \
hoary fox s
maned wolf // i‘y\
bush dog
side-striped jackal
og
grey wolf
coyote
Ethiopian wolf
dhole
African wild dog
y gray fox ————

island fox
black bear

giantpanda
northern elephant seal
walrus

[

Perform Malaria Test
(Microscopy if available or RDT)
VP Marketing
Malaria test is
Susan Jones

e | |,..,.,.,,w IES

W‘rhhn\d ’l‘:mlnx Treat for
uncomplicated | | uncomplicated
" -

[
VP Sales

Rachel Parker

|
2=

1
VP Production

oD

Tom Allen

A Manager

4

*: Not all family =

Malaria.

Alice Johnson

Manager

ﬁ

Michael Gross

A Manager

Kathy Roberts

o}

Manager

lineages are =
trees!

Tim Moore

n Manager

Kim Dole

Source: MOH (2009) Training Manual for the Management of Malaria at Health Facilities in Ghana

‘ ﬁ Manager
l I Betsy Foster

Trees

* Tree Traversals

Tree Traversals

Lecture 22, CS61B, Spring 2024

Example: File System Tree

Sometimes you want to iterate over a tree. For example, suppose you want to find
the total size of all files in a folder called 61b.

e What one might call “tree iteration” is actually called “tree traversal.”
e Unlike lists, there are many orders in which we might visit the nodes.

o Each ordering is useful in different ways.
61b
- — I\ T
proj0 hw1
audio data synthesizer spec GuitarHeroL.ite.java
TN AT~ T\ 1251 bytes
planets.txt
851 bytes hw1.md karplus-strong.png

23433 bytes

16180 bytes

Tree Traversal Orderings

Level Order
e Visit top-to-bottom, left-to-right (like reading in English): DBFACEG

Tree Traversal Orderings

Level Order
e Visit top-to-bottom, left-to-right (like reading in English): DBFACEG

Depth First Traversals

e 3 types: Preorder, Inorder, Postorder
e Basic (rough) idea: Traverse “deep nodes” (e.g. A) before shallow ones (e.g. F).
e Note: Traversing a node is different than “visiting” a node. See next slide.

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children:

preOrder(BSTNode x) { Call stack:
if (x == null) return; AR
print(x.key)
preOrder(x.left)
preOrder(x.right)

preOrder(D)

oL

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: D

preOrder(BSTNode x) { Call stack:
if (x == null) return;
print(x.key) L preOrder(D)

preOrder(x.left)
preOrder(x.right)

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: D

preOrder(BSTNode x) { Call stack:
if (x == null) return;
print(x.key) preOrder(D)
preOrder(x.left) —

preOrder(x.right)

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: D

preOrder (BSTNode x) { Call stack:
if (x == null) return; —
print(x.key) preOrder (D)
preOrder(x.left) preOrder(B)

preOrder(x.right)

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DB

preOrder(BSTNode x) {

if (x == null) return;
print(x.key)
preOrder(x.left)
preOrder(x.right)

oL

Call stack:
preOrder(D)
preOrder(B)

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DB

preOrder(BSTNode x) {

if (x == null) return;
print(x.key)
preOrder(x.left)
preOrder(x.right)

oL

Call stack:
preOrder(D)
preOrder(B)

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DB

preOrder (BSTNode x) { Call stack:
if (x == null) return; —
print(x.key) preOrder (D)
preOrder(x.left) preOrder(B)
preOrder(x.right) preOrder(A)
}

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DBA

preOrder (BSTNode x) { Call stack:
if (x == null) return;
print(x.key) L preOrder (D)
preOrder(x.left) preOrder(B)
preOrder(x.right) preOrder(A)
}

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DBA

preOrder(BSTNode x) { Call stack:
if (x == null) return;
print(x.key) preOrder(D)
preOrder(x.left) — preOrder(B)
preOrder(x.right) preOrder(A)
}
G Skipping over the steps of

preOrder(null) for brevity.

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DBA

preOrder(BSTNode x) { Call stack:
if (x == null) return;
print(x.key) preOrder(D)
preOrder(x.left) preOrder(B)
preOrder(x.right) AR preOrder(A)
}
G Skipping over the steps of

preOrder(null) for brevity.

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DBA

preOrder(BSTNode x) {

if (x == null) return;
print(x.key)
preOrder(x.left)
preOrder(x.right)

oL

Call stack:
preOrder(D)
preOrder(B)

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DBAC

preOrder(BSTNode x) {

if (x == null) return;
print(x.key)
preOrder(x.left)
preOrder(x.right)

Call stack:
preOrder(D)
preOrder(B)

Skipping over the steps of preOrder (C)
for brevity.

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DBAC

preOrder(BSTNode x) { Call stack:
if (x == null) return;
print(x.key) preOrder(D)
preOrder(x.left) —

preOrder(x.right)

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DBAC

preOrder(BSTNode x) {

if (x == null) return;
print(x.key)
preOrder(x.left)
preOrder(x.right)

oL

Call stack:
preOrder(D)
preOrder(F)

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DBACF

preOrder(BSTNode x) {

if (x == null) return;
print(x.key)
preOrder(x.left)
preOrder(x.right)

oL

Call stack:
preOrder(D)
preOrder(F)

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children;: DBACFE

preOrder(BSTNode x) {

if (x == null) return;
print(x.key)
preOrder(x.left)
preOrder(x.right)

Call stack:
preOrder(D)
preOrder(F)

Skipping over the steps of preOrder (E)
for brevity.

Demo: Preorder Depth-First Tree Traversal

Preorder: “Visit” a node, then traverse its children: DBACFEG

preOrder(BSTNode x) {

if (x == null) return;
print(x.key)
preOrder(x.left)
preOrder(x.right)

Call stack:
preOrder(D)
preOrder(F)

Skipping over the steps of preOrder(G)
for brevity.

Depth First Traversals

Preorder traversal: “Visit” a node, then traverse its children: DBACFEG

Inorder traversal: Traverse left child, visit, then traverse right child:

preOrder (BSTNode x) {
if (x == null) return;
print(x.key)
preOrder(x.left)
preOrder(x.right)

ABCDEFG
inOrder (BSTNode x) {
if (x == null) return;

inOrder(x.left)
print(x.key)
inOrder(x.right)

Depth First Traversals http://yellkey.com/yes

Preorder traversal: “Visit” a node, then traverse its children: DBACFEG

Inorder traversal: Traverse left child, visit, traverse right child: ABCDEFG

Postorder traversal: Traverse left, traverse right, then visit: 2??7???

O vl b WN K

DBACEFG
GFEDCBA
GEFCABD
ACBEGFD
ACBFEGD
Other

postOrder(BSTNode x) {

if (x == null) return;
postOrder(x.left)
postOrder(x.right)
print(x.key)

Depth First Traversals

Preorder traversal: “Visit” a node, then traverse its children: DBACFEG

Inorder traversal: Traverse left child, visit, traverse right child: ABCDEFG

Postorder traversal: Traverse left, traverse right, then visit: ACBEGFD

O U1 A WDN PR

DBACEFG
GFEDCBA
GEFCABD
ACBEGFD
ACBFEGD
Other

postOrder(BSTNode x) {

if (x == null) return;
postOrder(x.left)
postOrder(x.right)
print(x.key)

A Useful Visual Trick (for Humans, Not Algorithms)

e Preorder traversal: We trace a path around the graph, from the top going
counter-clockwise. “Visit” every time we pass the LEFT of a node.

e Inorder traversal: “Visit” when you cross the bottom of a node.

e Postorder traversal: “Visit” when you cross the right a node.

Example: Post-Order Traversal
e 478529631

Trees

 Usefulness of Tree Traversals

Usefulness of Tree
Traversals

Lecture 22, CS61B, Spring 2024

What Good Are All These Traversals?

Example: Preorder Traversal for printing directory listing:

SC2APM/
directOverlay/
directIO/
DXHookD3D11l.cs
Injector.cs
direct0.suo SC2APM
direct0.sln
notes
python/ directOverlay notes python
printAPM. py ‘/////,//”"‘\\\\\\\\\\
directlO directO.suo directO.sIn printAPM.py
DXHookD3D11.cs Injector.cs

oL

What Good Are All These Traversals?

Example: Postorder Traversal for gathering file sizes.

postOrder (BSTNode x) {

if (x == null) return 0;

int total = ©;

for (BSTNode c : x.children())
total += postOrder(c)

total += x.fileSize();
return total;

oL

directOverlay

38912

directlO

directO.suo

Sc2APM
324
notes python
874
directO.sIn printAPM.py

18381 /\ 8798

DXHookD3D11.cs

Injector.cs

What Good Are All These Traversals?

Example: Postorder Traversal for gathering file sizes.

postOrder (BSTNode x) {

if (x == null) return 0;

int total = ©;

for (BSTNode c : x.children())

total += postOrder(c)

total += x.fileSize();
return total;

oL

66972

directOverlay

directlO

directO.suo

68170
Sc2APM
324 874
notes python
874
directO.sIn printAPM.py

18381 /\ 8798

DXHookD3D11.cs

Injector.cs

Graphs
Graph Definition

Graph Definition

Lecture 22, CS61B, Spring 2024

Trees and Hierarchical Relationships

Trees are fantastic for representing strict hierarchical relationships.
e But not every relationship is hierarchical.
e Example: Paris Metro map.

Introduction to Network Visualization with GEPHI — Martin Grandjean

Examples
This is not a tree: Contains cycles!

e More than one way to get from A to B.

Tree Definition (Revisited)

A tree consists of;

e A setof nodes.
e A set of edges that connect those nodes.
o Constraint: There is exactly one path between any two nodes.

Green structures on slide are trees. Pink ones are not.

Graph Definition

A graph consists of:

e A set of nodes.
e A set of zero or more edges, each of which connects two nodes.

Green structures below are graphs.

e Note, all trees are graphs! |

Graph Example: BART

|s the BART graph a tree?

e No, has one cycle.
o San Bruno
o SFO
o Millbrae

()OO

North Concord/ Pittsburg/ Pittsburg

Martinez Bay Point Center
L 1 L -
@ Richmond J Antioch
Change vars 1
\ Concord tranfue platiorm
El Cerrito del Norte \ Pleasant Hill/Contra Costa Centre
El Cerrito Plaza \ Walnut Creek
North Berkeley \ Lafayette
Downtown Berkeley \ Orinda Antioch-SFO/Millbrae Line
4 Dublin/Pleasanton-Daly City Line
Ashby Rockridge EAST BAY NS I -

Berryessa/North San José—Daly City Line
Richmond-Millbrae Line

SFO-Millbrae Shuttle

Oakland International Airport (OAK)

MacArthur meo anseer (soutHsouno)
19th St/Oakland nmep rrawsrer (vorTHEOUND)

West i
Oakland 12th St/Oakland City Center S
Rail Transfer Station

SAN FRANCISCO
#Embarcadero,
(®Montgomery St
®Powell St
®Civic Center/UN Plaza

el

16th St Mission) Bay Fair Castro West Dublin/
24th St Mission Va:ley Pleasa‘ntoﬂ Dublin/Pleasanton
Glen Park ' nd Hayward
(& Balboa Park nternational
Airport (OAK)

remom

South San Francisco San Francisco
Sin Beuino, = ®international Airport (SFO) \
1001 MON-38 vk § \ Warm Springs/South Fremont
@Millbrae

Milpitas®

PENINSULA Berryessa/North San José

SAN JOSE

Graph Definition

A simple graph is a graph with:

e No edges that connect a vertex to itself, i.e. no “length 1 loops”.
e No two edges that connect the same vertices, i.e. no “parallel edges”.

Green graph below is simple, pink graphs are not.

__

Graph Definition

A simple graph is a graph with:

e No edges that connect a vertex to itself, i.e. no “loops”.
e No two edges that connect the same vertices, i.e. no “parallel edges”.

In 61B, unless otherwise explicitly stated, all graphs will be simple.
e In other words, when we say “graph”, we mean “simple graph.”

Graph Types

Directed Undirected

O
Acyclic: 6‘0
(o)

Graph Terminology

Graph:
vertex
o Set of vertices, a.k.a. nodes. edge
cycle of
o Set of edges: Pairs of vertices. length'5 \

o Vertices with an edge between are adjacent.

o Optional: Vertices or edges may have labels (or
weights).

path of
« length 4

A path is a sequence of vertices connected by edges. vertex of
o A simple path is a path without repeated vertices. degree 3

A cycle is a path whose first and last vertices are the
same.

o A graph with a cycle is ‘cyclic’. connected

) . . components
Two vertices are connected if there is a path between
them. If all vertices are connected, we say the graph is

connected.
Figure from Algorithms 4th Edition

Graph Example: The Paris Metro

This schematic map of the Paris Metro is a graph:
e Undirected

e Connected

P Cycl |C (no‘t a treel) IEnioductiIon to Network Visualization with GEPHI — Martin Grandjean
amples

e Vertex-labeled (each has a color).

Directed Graph Example

Not a tree!
e Two paths from
group_action to
event.

event

happening occurrence occurrent natural _event

mnracle
act human_action human_activity
change alteration modification miracle \
/ \ \ group_action
damage harm impairment transition increase forfeitforfeiture sacnﬁce action
/ T resistance opposmon transgress:on
leap jump saltation jumpleap
change
demotion T variation
motion movement move
f] locomotion travel descent
.) runrunning jump parachuting
http://wordnet.princeton.edu dash sprint

dge captures ‘is-a-type-of’ relationship. Example: descent is-a-type-of movement.

Graphs

« Some Famous Graph Problems

Some Famous
Graph Problems

Lecture 22, CS61B, Spring 2024

Graph Queries

There are lots of interesting questions we can ask about a graph:
e What is the shortest route from S to T? What is the longest without cycles?

e Arethere cycles?

Introduction to Network Visualization with GEPHI — Martin Grandjean

e |sthere atour you can take that Examples

only uses each node (station)
exactly once?

e |sthere atour that uses each edge
exactly once?

Graph Queries More Theoretically

Some well known graph problems and their common names:

s-t Path. Is there a path between vertices s and t?

Connectivity. Is the graph connected, i.e. is there a path between all vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?
Shortest s-t Path. What is the shortest path between vertices s and t?

Cycle Detection. Does the graph contain any cycles?

Euler Tour. Is there a cycle that uses every edge exactly once?

Hamilton Tour. Is there a cycle that uses every vertex exactly once?
Planarity. Can you draw the graph on paper with no crossing edges?
Isomorphism. Are two graphs isomorphic (the same graph in disguise)?

Often can't tell how difficult a graph problem is without very deep consideration.

Graph Problem Difficulty

Some well known graph problems:
e Euler Tour. Is there a cycle that uses every edge exactly once?
e Hamilton Tour. Is there a cycle that uses every vertex exactly once?

Difficulty can be deceiving.

e An efficient Euler tour algorithm O(# edges) was found as early as 1873 [Link].

e Despite decades of intense study, no efficient algorithm for a Hamilton tour
exists. Best algorithms are exponential time.

Graph problems are among the most mathematically rich areas of CS theory.

https://ethkim.github.io/TA/251/eulerian.pdf

Motivation for

. Graph Traversals
Graph Traversals * Motivation: s-t Connectivity
s-t Connectivity

Lecture 22, CS61B, Spring 2024

s-t Connectivity

Let's solve a classic graph problem called the s-t connectivity problem.
e Given source vertex s and a target vertex t, is there a path between s and t?

Requires us to traverse the graph somehow.

s-t Connectivity

Let's solve a classic graph problem called the s-t connectivity problem.
e Given source vertex s and a target vertex t, is there a path between s and t?

Requires us to traverse the graph somehow.
e Try to come up with an algorithm for connected(s, t).

s-t Connectivity

One possible recursive algorithm for connected(s, t).

e Does s ==t?If so, return true.
e Otherwise, if connected(v, t) for any neighbor v of s, return true.
e Return false.

What is wrong with the algorithm above?

D
/01/

s-t Connectivity

One possible recursive algorithm for connected(s, t).

e Does s ==t?If so, return true.
e Otherwise, if connected(v, t) for any neighbor v of s, return true.
e Return false.

What is wrong with the algorithm above?

A Jw
/01/

s-t Connectivity

One possible recursive algorithm for connected(s, t).
e Does s ==t?If so, return true.

e Otherwise, if connected(v, t) for any neighbor v of s, return true.

e Return false.

What is wrong with it? Can get caught in an infinite loop. Example:
e connected(0, 7):

o Does 0==7?No, so...]

o if (connected(1, 7)) return true; 0 1 4
e connected(1, 7): ° \ \

o Does1==7?No, so... 2 — | 5\

o If (connected(0, 7)) ... < Infinite loop.

s-t Connectivity

One possible recursive algorithm for connected(s, t).
e Does s ==t?If so, return true.

e Otherwise, if connected(v, t) for any neighbor v of s, return true.

e Return false.

What is wrong with it? Can get caught in an infinite loop.
e How do we fix it?

A~ lw
/01/

Graph Traversals

Depth F|rst Search * Depth First Search

Lecture 22, CS61B, Spring 2024

s-t Connectivity

One possible recursive algorithm for connected(s, t).

Mark s.

o
e Does s ==1t?If so, return true.
o
o

Return false.

Basic idea is same as before, but visit each vertex at most once.
e Marking nodes prevents multiple visits.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

1
o\
2

I
/01/

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.

o g

D
/01/

Demo: s-t Connectivity

connected(s, t):

e Marks.
Does s == t? If so, return true.

o
e Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
(

Return false.
Call stack: 0
mark(0).

Is 0 ==77? No.

isMarked(1)? No.
e Check connected(1, 7).

m/_\

D
/01/

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.
Call stack: 0 — 1
mark(1).
Is 1 ==77?No.
isMarked(0)? Yes.

isMarked(2)?
e Check connected(2, 7).

l\)/

D
/01/

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.
Callstack: 0 -1 — 2
mark(2).

Is 2 ==77? No.
isMarked(1)? Yes.

isMarked(5)?
e Check connected(5, 7).

—
Ny b

D
/01/

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.
Callstack: 0 -1 —-2—>5
mark(5).
Is 5==77? No.
isMarked(2)? Yes.

isMarked(4)?
e Check connected(4, 7).

I\)/A

Demo: s-t Connectivity

connected(s, t):

e Marks.

e Does s ==1t?If so, return true.

e Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
e Return false.

Callstack: 0 -1 —-2—->5—-4

3
mark(4).
Is 4 ==77 No. *
0 1
isMarked(1)? Yes. S \
isMarked(3)? No. 2 |—

e Check connected(3, 7).

N
/U'I/
>

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.
Callstack 0 -1 —-2—>5—-54-53
mark(3).
Is 3 ==77? No.
isMarked(4)? Yes.

No more neighbors! Return false.

I\)/A

N
/U'I/

Demo: s-t Connectivity

connected(s, t):

e Marks.
Does s == t? If so, return true.

o
e Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
(

Return false.

Callstack: 0 -1 —-2—->5—-4

Answer was
false.
isMarked(5)? Yes.
No more neighbors, so return false.

—=p W

I\)/A

N
/U'I/

Demo: s-t Connectivity

connected(s, t):

e Marks.
Does s == t? If so, return true.

o
e Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
(

Return false.

Callstack: 0 -1 —-2—>5

Answer was
false, so keep checking neighbors.

isMarked(6)?
e Check connected(6, 7).

I\)/A

o P R w

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.
Callstack 0 -1 —-2—>5—-56
mark(6).
Is 6 ==77? No.
isMarked(5)? Yes.

isMarked(7)? No.
e Check connected(7, 7).

I\)/A

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.

Callstack: 0 -1 -2 —>5—-6—->7

mark(7).
Is 7 ==77? Yes. Return true!

m/A

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.

Callstack: 0 -1 —->2—>5—6

mark(6).
Is 6 == 77 No.

isMarked(5)? Yes.
isMarked(7)? No.
e Check connected(7, 7). Answer was
true, so return true.

<1

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.

Call stack:0 -1 —>2—>5

mark(5).
Is 5 ==77 No.

isMarked(2)? Yes.
isMarked(4)?
e Check connected(4, 7). Answer was
false, so keep checking neighbors.
isMarked(5)? Yes.
isMarked(6)?
e Check connected(6, 7): Return true!

Ny

o e B P w

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.

Callstack: 0 -1 — 2

mark(2).
Is 2 ==77 No.

isMarked(1)? Yes.
isMarked(5)?
e Check connected(5, 7). Answer was
true, so return true!

—
Ny b

Demo: s-t Connectivity

connected(s, t):

Mark s.
Does s == t? If so, return true.

Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.

Return false.

Call stack: 0 — 1

mark(1).
Is 1 ==77 No.

isMarked(0)? Yes.
isMarked(2)?
e Check connected(2, 7). Answer was
true, so return true!

M/ﬁr

Demo: s-t Connectivity

connected(s, t):

e Marks.
Does s == t? If so, return true.

o
e Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
(

Return false.
Call stack: 0
mark(0).
Is 0 == 77 No.
isMarked(1)? No.

e Check connected(1, 7). Answer was
true, so return true!

|\>/ﬁi/A

Demo: s-t Connectivity

connected(s, t):

e Marks.
Does s == t? If so, return true.

o
e Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
(

A

Return false.

mark(0).
Is 0 == 77 No.

isMarked(1)? No.

e Check connected(1, 7). Answer was
true, so return true!

g\

»

M/-i/

Depth First Traversal

This idea of exploring a neighbor’s entire subgraph before moving on to the next
neighbor is known as Depth First Traversal or Depth First Search.

e Example: Explore 1's subgraph completely before using the edge 0-3.
e Called “depth first” because you go as deep as possible.

4
w
D
- |

y N

/2 8 |t
5
/

Depth First Traversal

This idea of exploring a neighbor’s entire subgraph before moving on to the next
neighbor is known as Depth First Traversal.

e Example: Explore 1's subgraph completely before using the edge 0-3.
e Called “depth first” because you go as deep as possible.

A
w
D
- |

/ \/
2 8 |t
< | . |
5 Entirely possible for 1’s subgraph to include 3!
J e |t's still depth first, since we’re not using the
6 edge 0-3 until the subgraph is explored.

PREPPRING FOR ADATE: T VRl BTV SANAAY e L,/\/\/WVW\,_I
OKAY, WHAT KINDS OF HM. WHICH SNAKES ARE
WHAT SITUATIONS EMERGENCIES CANHAPPEN? DPNGEROUS? LETS SEE... THE RESEARCH (OMPRRING

MIGHT T PREPPRE RR?) A) SNAKEBITE , DWGER SNAKE VENOVS 1 SCATTERED
1) MEDICAL EHERGENCY B) LIGHTNING STRKE ""3 stm T PeD WCONSKTENT. TU MAKE

2) DANCING O FALLFRM HAR A SPREADSHEET B ORGANIZE IT.
ML DRODTOBRENE 4 | oA paasmonu ‘\Wmuamn
O, 0)
‘ ° i '
o

IMHEREPKK BY Dy, THE INAND
YOUUP. YOURE TAIPAN HAS THE DEADUIEST
NOT DRESSED? VENOM OF ANY SNAKE

\)
y
From: htips://xkcd.com/761/
i

T REALY NEED TO STop
USING DEPTH-FIRST SEARCHES.

https://xkcd.com/761/

The Power of Depth First Search

DFS is a very powerful technique that can be used for many types of graph
problems.

Another example:
e Let's discuss an algorithm that computes a path to every vertex.
e Let's call this algorithm DepthFirstPaths.

e Goal: Find a path from s to every other reachable vertex, visiting each vertex
at most once.

Demo: DepthFirstPaths

dfs(v):
e Markv. . Call stack:
e For each unmarked adjacent vertex w: dfs(0)
o set edgeTo[w] = v.
o dfs(w)
Order of dfs calls: 0
marked edgeTo Start by calling dfs(0). B
0 F -
1 F -
2 F - 0 L 4
3 F -
A N
5 F - 2 —13
6 F - \
7 F - 8
8 F -

Order of dfs returns:

Demo: DepthFirstPaths

dfs(v):
e Markv.
o

ooOoNOUVTPA, WNRERO H

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)

marked

@

M T T T T T T M

edgeTo

dfs(0):

mark(0).

isMarked(1)? No.

edgeTo[1] = 0. dfs(1).

Call stack:
dfs(0)

Order of dfs calls: 01

3

.

4

;

\
5
\
8

Order of dfs returns:

Demo: DepthFirstPaths

dfs(v):
e Markv.
o

ooOoNOUVTPA, WNRERO H

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)

marked

T
@
F
F
F
F
F
F
F

edgeTo

%)

@

dfs(1):

mark(1).

isMarked(0)? Yes.
isMarked(2)? No.

edgeTo[2] = 1. dfs(2).

Call stack:

dfs(0) — dfs(1)

Order of dfs calls: 012

*

3

(%))

1

4

;

\
|___—195
\
8

Order of dfs returns:

Demo: DepthFirstPaths

dfs(v):
e Markyv. , Call stack:
e For each unmarked adjacent vertex w: dfs(0) — dfs(1) — dfs(2)
o set edgeTo[w] = v.
o dfs(w)
Order of dfs calls: 0125
marked edgeTo dfs(2):
) T - mark(2). 3
1 T 0 -
2 1 isMarked(1)? Yes. 6
3 CP - isMarked(5)? No. 0 L &
4 F - ° edgeTo[5] =2. de(5) S \ \ /\
6 F -
7 F - \
8 F - <

Order of dfs returns:

Demo: DepthFirstPaths

dfs(v):
e Markv.
o

ooOoNOUVTPA, WNRERO H

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)

marked
T

T
T
F
F

@
F
F
F

edgeTo

%)
1
®
2

dfs(5):

mark(5).

isMarked(2)? Yes.
isMarked(4)? No.

edgeTo[4] = 5. dfs(4).

Call stack:

dfs(0) — dfs(1) — dfs(2) —

dfs(5)

Order of dfs calls: 01254

3

1

4

*

;

2

5
\
8

Order of dfs returns:

Demo: DepthFirstPaths

dfs(v):
e Markyv. , Call stack:
e For each unmarked adjacent vertex w: dfs(0) — dfs(1) — dfs(2) —
o set edgeTo[w] = v. dfs(5) — dfs(4)
o dfs(w)
Order of dfs calls: 012543
marked edgeTo dfs(4):
) T - mark(4). 3
1 T (%] *
2 T 1 isMarked(1)? Yes. 0 1 4 6
3 F @ isMarked(3)? No.
4 @ 5 ° edgeTo[3] =4, de(3) S \ \ /\
5 T 2 5 |—5 /
6 F : \
7 F -
8 F - e

Order of dfs returns:

Demo: DepthFirstPaths

dfs(v):
s Markv. , . Call stack:
e For each unmarked adjacent vertex w: dfs(0) — dfs(1) — dfs(2) —
o setedgeTo[w] =v. dfs(5) — dfs(4) — dfs(3)
o dfs(w)
Order of dfs calls: 012543
marked edgeTo dfs(3): *
) T - mark(3). 3
1 T 0 @
2 T 1 isMarked(4)? Yes. 0] 4 6
3) 4 S
4 T 5 No more children, so return. \ \
5 T 2 5 |—5 /
6 F - \
7 F
8 F - 8

Order of dfs returns: 3

Demo: DepthFirstPaths

dfs(v):
e Markv.
o

ooOoNOUVTPA, WNRERO H

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)

marked
T

mm T4 4 -4

edgeTo

r NNV PA~AERO

dfs(4):

No more children, so return.

Call stack:

dfs(0) — dfs(1) — dfs(2) —
dfs(5) — dfs(4)

Order of dfs calls: 012543

3

*

1

6

/%

;

4
\
5
\

8

Order of dfs returns: 34

Demo: DepthFirstPaths

dfs(v):
e Markv.
o

ooOoNOUVTPA, WNRERO H

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)
marked
T
T
T
T
T
T
F
F
F

edgeTo

(%]
1
4
5
2
®

dfs(5):

isMarked(6)? No.

edgeTo[6] = 5. dfs(6).

Call stack:

dfs(0) — dfs(1) — dfs(2) —

dfs(5)

Order of dfs calls: 0125436

3

1

4

*

6

/%

;

5
\
8

Order of dfs returns: 34

Demo: DepthFirstPaths

dfs(v):
e Markv.
o

ooOoNOUVTPA, WNRERO H

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)
marked
T
T
T
T
T
T
®
F
F

edgeTo

(%]
1
4
5
2
5
®

dfs(6):

mark(6).

isMarked(5)? Yes.
isMarked(7)? No.

edgeTo[7] = 6. dfs(7).

Call stack:

dfs(0) — dfs(1) — dfs(2) —
dfs(5) — dfs(6)

Order of dfs calls: 01254367

3

1

*

6

;

2

4
\
5
\

8

Order of dfs returns: 34

Demo: DepthFirstPaths

dfs(v):
e Markyv. , . Call stack:
e For each unmarked adjacent vertex w: dfs(0) — dfs(1) — dfs(2) —
o setedgeTo[w] =v. dfs(5) — dfs(6) — dfs(7)
o dfs(w)
Order of dfs calls: 01254367
marked edgeTo dfs(7):
) T - mark(7). 3
1 T 0
2 T 1 isMarked(6)? Yes. 0 1 4 6
3 T 4 S
4 T 5 No more children, so return. \ \ 2
5 T 2 5 |—5 7/
6 T 5 \
7) 6
8 F - 8

Order of dfs returns: 347

Demo: DepthFirstPaths

dfs(v):
e Markv.
o

ooOoNOUVTPA, WNRERO H

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)

marked
T

IR R R B

edgeTo

(I e) W U2 B NG T U, [S R (3]

dfs(6):

No more children, so return.

Call stack:

dfs(0) — dfs(1) — dfs(2) —
dfs(5) — dfs(6)

Order of dfs calls: 01254367

3

1

*

6

&

;

4
\
5
\

8

Order of dfs returns: 3476

Demo: DepthFirstPaths

dfs(v):
e Markv.
o

ooOoNOUVTPA, WNRERO H

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)
marked
T
T
T
T
T
T
T
T
F

edgeTo

@O‘\U‘ll\)U‘lhl—\@l

dfs(5):

isMarked(8)? No.
e edgeTol8] = 5. dfs(8).

Call stack:

dfs(0) — dfs(1) — dfs(2) —

dfs(5)

Order of dfs calls: 012543678

3

1

4

*

6

&

;

5
\
8

Order of dfs returns: 3476

Demo: DepthFirstPaths

dfs(v):
e Markv.
o

ooOoNOUVTPA, WNRERO H

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)

marked

(:)—4-4-4 — = -

edgeTo

MoV RNRO®

dfs(8):
mark(8)

isMarked(5)? Yes.

No more children, so return.

Call stack:

dfs(0) — dfs(1) — dfs(2) —
dfs(5) — dfs(8)

Order of dfs calls: 012543678

3

1

6

&

;

1

o\

8

Order of dfs returns: 34768

Demo: DepthFirstPaths

dfs(v):
e Markv.
o

ooOoNOUVTPA, WNRERO H

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)
marked
T
T
T
T
T
T
T
T
T

edgeTo

vuvoouiNn UV A RO

dfs(5):
mark(5).

isMarked(2)? Yes.
isMarked(4)? No.

e edgeTo[3] = 4. dfs(4).
isMarked(6)? No.

e edgeTo[6] = 5. dfs(6).
isMarked(8)? No.

e edgeTo[8] = 5. dfs(8)

No more children, so return.

Call stack:

dfs(0) — dfs(1) — dfs(2) —

dfs(5)

Order of dfs calls: 012543678

3

4

*

6

/%

;

5
\
8

Order of dfs returns:; 347685

Demo: DepthFirstPaths

For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

dfs(v):
e Markv.
[)
o dfs(w)

marked
0 T

1 T

2 T

3 T

4 T

5 T

6 T

7 T

8 T

edgeTo

MoV RNRO®

dfs(2):

No more children, so return.

Call stack:

de(O) — de(1) — de(Z)

Order of dfs calls: 012543678

3

1

6

|

&

4
\
5
\

8

Order of dfs returns:; 3476852

Demo: DepthFirstPaths

dfs(v):
e Markv.

e For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)
marked
0 T
1 T
2 T
3 T
4 T
5 T
6 T
7 T
8 T

edgeTo

vuvoouiNn UV A RO

dfs(1):

isMarked(4)? Yes.

No more children, so return.

Call stack:

dfs(0) — dfs(1)

Order of dfs calls: 012543678

*

3

1

6

;

/%

4
\
5
\

8

Order of dfs returns: 34768521

Demo: DepthFirstPaths

dfs(v):
e Markv.

e For each unmarked adjacent vertex w:
o set edgeTo[w] = v.

o dfs(w)
marked
0 T
1 T
2 T
3 T
4 T
5 T
6 T
7 T
8 T

edgeTo

vuvoouiNn UV A RO

dfs(0):

No more children, so return.

Call stack:

dfs(0)

Order of dfs calls: 012543678

3

1

6

;

/%

4
\
5
\

8

Order of dfs returns: 347685210

Graph Traversals

Tree vs. Graph
Trave I'Sa I S « Tree vs. Graph Traversals

Lecture 22, CS61B, Spring 2024

Tree Traversals

There are many tree traversals:

e Preorder: DBACFEG e

e |norder: ABCDEFG

e Postorder: ACBEGFD

e Level order: DBFACEG e e

Graph Traversals

There are many tree traversals:

e Preorder: DBACFEG
Inorder: ABCDEFG

(J
e Postorder: ACBEGFD
e |Level order: DBFACEG G

What we just did in DepthFirstPaths is called “DFS Preorder.”
e DFS Preorder: Action is before DFS calls to neighbors.

o Our action was setting edgeTo.
o Example: edgeTo[1] was set before
DFS calls to neighbors 2 and 4.
e One valid DFS preorder for this graph: 012543678
o Equivalent to the order of dfs calls.

0

S

6

2

m/_‘

N
/01/

Graph Traversals

There are many tree traversals:

e Preorder: DBACFEG e

e |norder: ABCDEFG

e Postorder: ACBEGFD

e Level order: DBFACEG e G

Could also do actions in DFS Postorder. 0 G G G

e DFS Postorder: Action is after DFS calls to neighbors.

e Example: dfs(s): 3
o mark(s)
o For each unmarked neighbor n of s, dfs(n) 0 1 4 6
o print(s) s \ \ /\
e Results for dfs(0) would be: 347685210 z p
e Equivalent to the order of dfs returns. 2 \
8

Graph Traversals

Just as there are many tree traversals:

e Preorder: DBACFEG e

e |norder: ABCDEFG

e Postorder: ACBEGFD

e Level order: DBFACEG e e

So too are there many graph traversals, given some source:

e DFS Preorder: 012543678 (dfs calls). 3
e DFS Postorder: 347685210 (dfs returns).

6

2

N
/01/

Graph Traversals

Just as there are many tree traversals:

e Preorder: DBACFEG

e |norder: ABCDEFG

e Postorder: ACBEGFD
e Level order: DBFACEG

So too are there many graph traversals, given some source:

e DFS Preorder: 012543678 (dfs calls).

e DFS Postorder: 347685210 (dfs returns).

e BFS order: Act in order of distance from s.
o BFS stands for “breadth first search”.

o Analogous to “level order”. Search is wide, not deep.

o 012453687

0

S

6

2

m/_‘

N
/01/

Challenge: Invent
Breadth First
Search

Lecture 22, CS61B, Spring 2024

Challenge: Invent Breadth First
Search

Shortest Paths Challenge Before Next Lecture

Y
Vo b
\

Goal: Given the graph above, find the length of the shortest path from s to all
other vertices.

e Give a general algorithm.

e Hint: You'll need to somehow visit vertices in BFS order.

e Hint #2: You'll need to use some kind of data structure.
Will discuss a solution in the next lecture.

Summary

Graphs are a more general idea than a tree.
e Atreeis a graph where there are no cycles and every vertex is connected.
e Key graph terms: Directed, Undirected, Cyclic, Acyclic, Path, Cycle.

Graph problems vary widely in difficulty.
e Common tool for solving almost all graph problems is traversal.
e Atraversal is an order in which you visit / act upon vertices.
e Treetraversals:
o Preorder, inorder, postorder, level order.
e Graph traversals:
o DFS preorder, DFS postorder, BFS.

e By performing actions / setting instance variables during a graph (or tree)

traversal, you can solve problems like s-t connectivity or path finding.

